Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils.
نویسندگان
چکیده
Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.
منابع مشابه
Effect of Low-Power Helium-Neon Laser Irradiation on Collagen Fibril Thickness of Incisized Medial Collateral Ligament of Knee in Rat
Purpose: The aim of the present study is to investigate the effect of low-power Helium-Neon laser (LPL) on collagen fibril thickness of incisized medial collateral ligament of knee joint (MCL) in rat. Materials and Methods: MCL of right hind limb of 35 male adult sprague Dawley rat under general anesthesia were transversly incisized. Rats were randomly divitded into normal, control, first lase...
متن کاملType III collagen can be present on banded collagen fibrils regardless of fibril diameter
Monoclonal antibodies that recognize an epitope within the triple helix of type III collagen have been used to examine the distribution of that collagen type in human skin, cornea, amnion, aorta, and tendon. Ultrastructural examination of those tissues indicates antibody binding to collagen fibrils in skin, amnion, aorta, and tendon regardless of the diameter of the fibril. The antibody distrib...
متن کاملCollagen fibril morphology and organization: implications for force transmission in ligament and tendon.
Connective tissue mechanical behavior is primarily determined by the composition and organization of collagen. In ligaments and tendons, type I collagen is the principal structural element of the extracellular matrix, which acts to transmit force between bones or bone and muscle, respectively. Therefore, characterization of collagen fibril morphology and organization in fetal and skeletally mat...
متن کاملControl of the collagen fibril diameter in the equine superficial digital flexor tendon in horses by decorin.
The distribution pattern of collagen fibril diameter in the equine superficial digital flexor tendon (SDFT) is known to differ in central and peripheral areas of some regions. This study reports the essence of collagen fibril differences among different regions of the equine SDFT by transmission electron microscopic (TEM) and high-voltage electron microscopic observations and biochemical analys...
متن کاملExtracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation
The formation of collagen fibrils, fibril bundles, and tissue-specific collagen macroaggregates by chick embryo tendon fibroblasts was studied using conventional and high voltage electron microscopy. During chick tendon morphogenesis, there are at least three extracellular compartments responsible for three levels of matrix organization: collagen fibrils, bundles, and collagen macroaggregates. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical biology
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2016